Photobehavior of an Acidochromic Dinitrophenyl-Hydrazinylidene Derivative: A Case of Total Internal Conversion

Author:

Mencaroni LetiziaORCID,Cesaretti AlessioORCID,Consiglio GiuseppeORCID,Elisei FaustoORCID,Fortuna Cosimo Gianluca,Spalletti Anna

Abstract

Research in photochemistry is always looking for novel compounds that can serve a role in applications ranging from medicine to environmental science. Push–pull compounds with protonable groups represent an interesting class of molecules in this sense, as they can prove to be sensitive to changes in both the acidity and polarity of the medium, becoming valuable as sensors and probes. Hence, in this work, a new dinitrophenyl-hydrazinylidene derivative with multiple protonable centers has been specifically designed and synthesized. The molecule showed an important acidochromism in the visible, with three differently-protonated species under acidic, neutral, and basic conditions, each characterized by a peculiar absorption spectrum. The photophysical characterization of this compound revealed an ultrafast excited-state deactivation, as described by femtosecond transient absorption experiments, and the hints of charge-transfer dynamics, as supported by the observed solvatochromism and quantum-mechanical calculations. These properties led to almost undetectable fluorescence that, together with negligible intersystem crossing and the absence of reactive pathways, points to the preference for a total non-radiative deactivation mechanism, i.e., internal conversion. This intriguing behavior stimulates interest in light of possible applications of the investigated acidochromic dye as a probe in photoacoustic imaging, which offers an alternative to classical fluorescence imaging.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3