Progress in the Photoreforming of Carboxylic Acids for Hydrogen Production

Author:

Samage Anita,Gupta Pooja,Halakarni Mahaveer A.,Nataraj Sanna Kotrappanavar,Sinhamahapatra Apurba

Abstract

Photoreforming is a process that connects the redox capability of photocatalysts upon light illumination to simultaneously drive the reduction of protons into hydrogen and the oxidation of organic substrates. Over the past few decades, researchers have devoted substantial efforts to enhancing the photocatalytic activity of the catalyst in hydrogen production. Currently, the realization of the potential of photocatalysts for simultaneous hydrogen production with value-added organics has motivated the research field to use the photo-oxidation path. As a distinct benefit, the less energetically demanding organic reforming is highly favorable compared to the slow kinetics of oxygen evolution, negating the need for expensive and/or harmful hole scavengers. Photocatalyst modifications, such as secondary component deposition, doping, defect, phase and morphology engineering, have been the main strategies adopted to tune the photo-oxidation pathways and oxidation products. The effect of the reaction parameters, including temperature, pH, reactant concentration and promising reactor strategies, can further enhance selectivity toward desired outcomes. This review provides a critical overview of photocatalysts in hydrogen production, including chemical reactions occurring with semiconductors and co-catalysts. The use of various oxygenates as sacrificial agents for hydrogen production is outlined in view of the transition of fossil fuels to clean energy. This review mainly focuses on recent development in the photoreforming of carboxylic acids, produced from the primary source, lignocellulose, through pyrolysis. The photo-oxidation of different carboxylic acids, e.g., formic acid, acetic acid and lactic acid, over different photocatalysts for hydrogen production is reviewed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3