Abstract
Due to their excellent properties and unique structures, transition metal sulfides play an important role in the development of efficient and stable photoelectric catalysts. In recent years, their potential applications have expanded from photoelectric catalysis to energy storage, especially as materials for key components of electrochemical energy storage. As a typical multifunctional metal sulfide catalyst, Co9S8 is highly attractive due to its high conductivity, better stability, suitable band structure, enhanced performance and wide applications. A large number of studies have shown that strategically modified Co9S8-based materials have greater advantages in various applications compared with pure Co9S8. Therefore, this review will evaluate the physicochemical properties and the preparation of different dimensions of Co9S8-based materials, and the influence of different structures on the photoelectrochemical energy of materials will be described. In addition, the research progress regarding the evolution of hydrogen photocatalytic, electrocatalytic water splitting and various electrochemical energy storage materials will be emphasized. Finally, the challenges faced by Co9S8-based materials and the research directions for their future applications will be discussed.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献