Synthesis of Metallic and Metal Oxide Nanoparticles Using Homopolymers as Solid Templates: Luminescent Properties of the Eu+3 Nanoparticle Products
-
Published:2024-07-14
Issue:3
Volume:4
Page:302-318
-
ISSN:2673-7256
-
Container-title:Photochem
-
language:en
-
Short-container-title:Photochem
Author:
Cortés María Ángeles1, Díaz Carlos1, de la Campa Raquel2, Presa-Soto Alejandro2ORCID, Valenzuela María Luisa3ORCID
Affiliation:
1. Departamento de Química, Facultad de Química, Universidad de Chile, La Palmeras, 3425, Nuñoa, Casilla 653, Santiago 8330015, Chile 2. Departamento de Química Orgánica e Inorgánica (IUQOEM), Facultad de Química, Universidad de Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain 3. Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Av. El Llano Subercaseaux, 2801, Santiago 7500912, Chile
Abstract
Starting from poly(4-vinylpyridine) ((P4VP)n), poly(2-vinylpyridine) ((P2VP)n), and [N=P(O2CH2CF3)]m-b-P2VP20 block copolymers, a series of metal-containing homopolymers, (P4VP)n⊕MXm, (P2VP)n⊕MXm, and [N=P(O2CH2CF3)]m-b-P2VP20]⊕MXm MXm = PtCl2, ZnCl2, and Eu(NO3)3, have been successfully prepared by using a direct and simple solution methodology. Solid-state pyrolysis of the prepared metal-containing polymeric precursors led to the formation of a variety of different metallic and metal oxide nanoparticles (Pt, ZnO, Eu2O3, and EuPO4) depending on the composition and nature of the polymeric template precursor. Thus, whereas Eu2O3 nanostructures were obtained from europium-containing homopolymers ((P4VP)n⊕MXm and (P2VP)n⊕MXm), EuPO4 nanostructures were achieved using phosphorus-containing block copolymer precursors, [N=P(O2CH2CF3)]m-b-P2VP20]⊕MXm with MXm = Eu(NO3)3. Importantly, and although both Eu2O3 and EuPO4 nanostructures exhibited a strong luminescence emission, these were strongly influenced by the nature and composition of the macromolecular metal-containing polymer template. Thus, for P2VP europium-containing homopolymers ((P4VP)n⊕MXm and (P2VP)n⊕MXm), the highest emission intensity corresponded to the lowest-molecular-weight homopolymer template, [P4VP(Eu(NO3)3]6000, whereas the opposite behavior was observed when block copolymer precursors, [N=P(O2CH2CF3)]m-b-P2VP20]⊕MXm MXm= Eu(NO3)3, were used (highest emission intensity corresponded to [N=P(O2CH2CF3)]100-b-[P2VP(Eu(NO3)3)x]20). The intensity ratio of the emission transitions: 5D0 → 7F2/5D0 → 7F1, suggested a different symmetry around the Eu3+ ions depending on the nature of the polymeric precursor, which also influenced the sizes of the prepared Pt°, ZnO, Eu2O3, and EuPO4 nanostructures.
Funder
Vice-Rector for Research and Postgraduate Studies, Universidad Autónoma de Chile
Reference68 articles.
1. Recent developments in polyphosphazene materials science;Allcock;Curr. Opin. Solid State Mater. Sci.,2006 2. Synthesis of high polymeric alkoxy- and aryloxy-phosphonitriles;Allcock;J. Am. Chem. Soc.,1965 3. Linhardt, A., König, M., Schöfberger, W., Brüggemann, O., Andrianov, A.K., and Teasdale, I. (2016). Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids. Polymers, 8. 4. Polyphosphazenes That Contain Dipeptide Side Groups: Synthesis, Characterization, and Sensitivity to Hydrolysis;Weidel;Macromolecules,2009 5. Polyphosphazenes-based flame retardants: A review;Zhou;Compos. Part B Eng.,2020
|
|