Effect of Benzophenone Type UV Filters on Photodegradation of Co-existing Sulfamethoxazole in Water

Author:

Kodikara Dilini1,Guo Zhongyu1ORCID,Yoshimura Chihiro1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Abstract

Benzophenones (BPs) frequently occur in water environments, and they are able to both screen UV light and to sensitize reactive intermediate (RI) production. However, BPs have largely been overlooked as a background water component when studying photodegradation of co-existing organic micropollutants (OMPs). Therefore, in this study, we investigated the influence of BP and its derivative oxybenzone (BP3) on the degradation of the co-existing model OMP sulfamethoxazole (SMX). A series of photodegradation experiments were conducted covering a range of BPs concentrations in μg/L levels, and the degradation of 1.00 μM of SMX was studied. The addition of BP at 0.10 μM, 0.25 μM, and 0.30 μM, and BP3 at 0.10 μM and 0.25 μM, significantly increased the first order degradation rate constant of 1.00 μM of SMX (kobs(BP)) by 36.2%, 50.0%, 7.3%, 31.5%, and 36.2% respectively, compared to that in the absence of any BPs. The maximum indirect photodegradation induced by BP and BP3 reached 33.8% and 27.7%, respectively, as a percentage of the observed SMX degradation rate at the [BPs]/[SMX] ratio of 0.25. In general, triplet excited dissolved organic matter (3SMX*, 3BP*, and 3BP3*) played the major role in the photosensitizing ability of BPs. The results further implied that the increase of SMX degradation at the molar ratio of 0.25 was possibly due to 3BP* for the mixture of SMX and BP. Overall, this study revealed the sensitizing ability of BP and BP3 on the co-existing OMP, SMX, in water for the first time. Our findings can be applied to other BP type UV filters which are similar to BP and PB3 in molecular structure.

Funder

Japan Society for the Promotion of Science, JSPS KAKENHI

Asia-Pacific Network for Global Change Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3