Abstract
This study investigated the decolorization of Remazol Black (RBB) using a TiO2 photocatalyst modified by S and Co co-doped TiO2 (S-Co-TiO2) from a single precursor. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and UV–Vis specular reflectance spectroscopy were used to characterize the photocatalysts. The results revealed that the band-gap energy of the doped and co-doped TiO2 decreased, with the S-Co-TiO2 8% showing the greatest one, and was found to be 2.78 eV while undoped TiO2 was 3.20 eV. The presence of S and Co was also identified through SEM-EDX. An activity study on RBB removal revealed that the S-Co-TiO2 photocatalyst showed the best result compared to undoped TiO2, S-TiO2, and Co-TiO2. The S-Co-TiO2 8% photocatalyst reduced RBB concentration (20 mg L−1) up to 96% after 90 min of visible light irradiation, whereas S-TiO2, Co-TiO2, and undoped TiO2 reduced it to 89%, 56%, and 39%, respectively. A pH optimization study showed that the optimum pH of RBB decolorization by S-Co-TiO2 was 3.0, the optimum mass was 0.6 g L−1, and reuse studies show that S-Co-TiO2 8% has the potential to be used repeatedly to remove colored pollutants. The results obtained indicate that the modification of S, Co co-doped titania synthesized using a single precursor has been successfully carried out and showed excellent characteristics and activity compared to undoped or doped TiO2.
Funder
Ministry of Research, Technology and Higher Education
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献