Remazol Black Decontamination Study Using a Novel One-Pot Synthesized S and Co Co-Doped TiO2 Photocatalyst

Author:

Dwiyanna RiskaORCID,Roto RotoORCID,Wahyuni Endang TriORCID

Abstract

This study investigated the decolorization of Remazol Black (RBB) using a TiO2 photocatalyst modified by S and Co co-doped TiO2 (S-Co-TiO2) from a single precursor. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and UV–Vis specular reflectance spectroscopy were used to characterize the photocatalysts. The results revealed that the band-gap energy of the doped and co-doped TiO2 decreased, with the S-Co-TiO2 8% showing the greatest one, and was found to be 2.78 eV while undoped TiO2 was 3.20 eV. The presence of S and Co was also identified through SEM-EDX. An activity study on RBB removal revealed that the S-Co-TiO2 photocatalyst showed the best result compared to undoped TiO2, S-TiO2, and Co-TiO2. The S-Co-TiO2 8% photocatalyst reduced RBB concentration (20 mg L−1) up to 96% after 90 min of visible light irradiation, whereas S-TiO2, Co-TiO2, and undoped TiO2 reduced it to 89%, 56%, and 39%, respectively. A pH optimization study showed that the optimum pH of RBB decolorization by S-Co-TiO2 was 3.0, the optimum mass was 0.6 g L−1, and reuse studies show that S-Co-TiO2 8% has the potential to be used repeatedly to remove colored pollutants. The results obtained indicate that the modification of S, Co co-doped titania synthesized using a single precursor has been successfully carried out and showed excellent characteristics and activity compared to undoped or doped TiO2.

Funder

Ministry of Research, Technology and Higher Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3