Metal Ion-Induced Formation of Metallogels by Visible-Light-Responsive Phenylalanine-Functionalized Arylazopyrazole Ligands

Author:

Browning Mikayla1,Jefferson Alexandra1,Geter Jazz1,Ghebreyessus Kesete1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, Hampton University, Hampton, VA 23668, USA

Abstract

A visible-light-responsive arylazopyrazole-functionalized phenylalanine (4-MeS-AAP-NF) derived ligand was designed and synthesized, and it was found to form metallogels with reversible photo-responsive properties in mixed methanol/water (MeOH/H2O) solvents. The gelation behavior of the 4-MeS-AAP-NF ligand in the presence of different divalent metal ions in mixed methanol/water (MeOH/H2O) solvents at pH~11.60 was studied. It was found that the 4-MeS-AAP-NF ligand alone could not self-assemble to form any gels. However, in the presence of divalent metal ions, it readily formed the assembled metallogels in an alkaline aqueous/methanol solution with various morphologies. The results suggest that the gelation process was triggered by divalent metal ions. The presence of the AAP moiety in the gel matrix rendered the metallogel assemblies photo-responsive, and the reversible gel-to-sol phase transition was studied by UV-vis spectroscopy. The gels showed a slow, reversible visible-light-induced gel-to-sol phase transition under blue (λ = 405 nm) and then sol-to-gel transition by green light (λ = 530 nm) irradiation, resulting in the re-formation of the original gel state. The morphology and viscoelastic properties of the yellow–orange opaque metallogels were characterized by scanning electron microscopy (SEM) and rheological measurement, respectively.

Funder

U.S. National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Amide functional low molecular weight gelator based metallogel;Coordination Chemistry Reviews;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3