Concurrent Photooxidation and Photoreduction of Catechols and Para-Quinones by Chlorophyll Metabolites

Author:

Phan Katherine1ORCID,Lessard Emily E.1ORCID,Reed Joseph A.1,Warsen Meredith G.1,Zimmer Soren1,Landino Lisa M.1ORCID

Affiliation:

1. Department of Chemistry, College of William & Mary, Williamsburg, VA 23815, USA

Abstract

Photosynthesis is initiated when the sun’s light induces electron transfer from chlorophyll to plastoquinone, a para-quinone. While photosynthesis occurs in the intact chloroplasts of living plants, similar photochemical reactions between dietary chlorophyll metabolites and quinones are likely and may affect health outcomes. Herein, we continue our studies of the direct photoreduction of para-quinones and ortho-quinones that were generated by the photo-oxidation of catechols. Chlorophyll metabolites, including pheophorbide A, chlorin e6, and pyropheophorbide A, as well as methylene blue were employed as photosensitizers. We detected hydrogen peroxide using horseradish peroxidase following the photo-oxidation of the catechol dopamine, even in the presence of EDTA, a tertiary amine electron donor. Under ambient oxygen, hydrogen peroxide was also detected after the photoreduction of several para-quinones, including 2,3-dimethoxy-5-methyl-p-benzoquinone (CoQ0), methoxy-benzoquinone, and methyl-benzoquinone. The combinations of methylene blue and EDTA or pheophorbide A and triethanolamine as the electron donor in 20% dimethylformamide were optimized for photoreduction of the para-quinones. Chlorin e6 and pyropheophorbide A were less effective for the photoreduction of CoQ0 but were equivalent to pheophorbide A for generating hydrogen peroxide in photo-oxidation reactions with photosensitizers, oxygen, and triethanolamine. We employed dinitrophenylhydrazine to generate intensely colored adducts of methoxy-benzoquinone, methyl-benzoquinone, and 1,4-benzoquinone.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3