A CNN Approach for Emotion Recognition via EEG

Author:

Mahmoud Aseel1,Amin Khalid1,Al Rahhal Mohamad Mahmoud2ORCID,Elkilani Wail S.2,Mekhalfi Mohamed Lamine3,Ibrahim Mina1ORCID

Affiliation:

1. Department of Information Technology, Faculty of Computers and Information, Menoufia University, Shebin El-Kom 32511, Egypt

2. Applied Computer Science Department, College of Applied Computer Science, King Saud University, Riyadh 11543, Saudi Arabia

3. Digital Industry Center, Technologies of Vision Unit, Fondazione Bruno Kessler, 38123 Trento, Italy

Abstract

Emotion recognition via electroencephalography (EEG) has been gaining increasing attention in applications such as human–computer interaction, mental health assessment, and affective computing. However, it poses several challenges, primarily stemming from the complex and noisy nature of EEG signals. Commonly adopted strategies involve feature extraction and machine learning techniques, which often struggle to capture intricate emotional nuances and may require extensive handcrafted feature engineering. To address these limitations, we propose a novel approach utilizing convolutional neural networks (CNNs) for EEG emotion recognition. Unlike traditional methods, our CNN-based approach learns discriminative cues directly from raw EEG signals, bypassing the need for intricate feature engineering. This approach not only simplifies the preprocessing pipeline but also allows for the extraction of more informative features. We achieve state-of-the-art performance on benchmark emotion datasets, namely DEAP and SEED datasets, showcasing the superiority of our approach in capturing subtle emotional cues. In particular, accuracies of 96.32% and 92.54% were achieved on SEED and DEAP datasets, respectively. Further, our pipeline is robust against noise and artefact interference, enhancing its applicability in real-world scenarios.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3