A Novel Four-Dimensional Memristive Hyperchaotic Map Based on a Three-Dimensional Parabolic Chaotic Map with a Discrete Memristor

Author:

Wang Mengjiao1ORCID,Tong Luyao2,Li Chunlai3,Zhang Xinan4,Iu Herbert Ho-Ching4,Li Zhijun1

Affiliation:

1. School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China

2. School of Physics and Optoelectronic Engineering, Xiangtan University, Xiangtan 411105, China

3. School of Computer Science & School of Cyberspace Science, Xiangtan University, Xiangtan 411105, China

4. School of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, WA 6009, Australia

Abstract

Recently, the application of memristors in chaotic systems has been extensively studied. Unfortunately, there is limited literature on the introduction of discrete memristors into chaotic maps, especially into non-classical multidimensional maps. For this reason, this paper establishes a new three-dimensional parabolic chaotic map model; in order to improve the complexity and randomness of the map, it is coupled with a square-charge-controlled discrete memristor to design a new four-dimensional memristive hyperchaotic map. Firstly, the stability of the two maps is discussed. And their dynamical properties are compared using Lyapunov exponential spectra and bifurcation diagrams. Then, the phase diagram and iteration sequence of the 4D memristive hyperchaotic map are obtained. Meanwhile, we investigate the hyperchaotic states, the transient chaos, state transfer and attractor coexistence phenomena of the four-dimensional memristive map. In particular, the special state transfer phenomenon of switching from a periodic attractor to a quasi-periodic attractor and the special coexistence phenomenon of a quasi-periodic attractor coexisting with a quasi-periodic attractor around fixed points are found, which have not been observed in other systems. Finally, the phase-track diagrams and iterative sequence diagrams of the four-dimensional memristive map are verified on a digital experimental platform, revealing its potential for practical applications.

Funder

National Natural Science Foundation of China

Research Foundation of Education Department of Hunan Province, China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3