Fractional Bernoulli and Euler Numbers and Related Fractional Polynomials—A Symmetry in Number Theory

Author:

Caratelli Diego12ORCID,Natalini Pierpaolo3,Ricci Paolo Emilio4ORCID

Affiliation:

1. Department of Research and Development, The Antenna Company, High Tech Campus 29, 5656 AE Eindhoven, The Netherlands

2. Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3. Department of Mathematics and Physics, Roma Tre University, Largo San Leonardo Murialdo 1, 00146 Rome, Italy

4. Department of Mathematics, International Telematic University UniNettuno, Corso Vittorio Emanuele II 39, 00186 Rome, Italy

Abstract

Bernoulli and Euler numbers and polynomials are well known and find applications in various areas of mathematics, such as number theory, combinatorial mathematics, series expansions, and the theory of special functions. Using fractional exponential functions, we extend the classical Bernoulli and Euler numbers and polynomials to introduce their fractional-index-based types. This reveals a symmetry in relation to the classical numbers and polynomials. We demonstrate some examples of these generalized mathematical entities, which we derive using the computer algebra system Mathematica©.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference18 articles.

1. Samko, S., Kilbas, A.A., and Marichev, O. (1993). Fractional Integrals and Derivatives, Taylor & Francis.

2. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006). North-Holland Mathematics Studies, Elsevier.

3. Carpinteri, A., and Mainardi, F. (1997). Fractals and Fractional Calculus in Continuum Mechanics, Springer.

4. The fundamental solution of the space-time fractional diffusion equation;Mainardi;Fract. Calc. Appl. Anal.,2001

5. Groza, G., and Jianu, M. (2018, January 23–26). Functions represented into fractional Taylor series. Proceedings of the 1st International Conference on Computational Methods and Applications in Engineering (ICCMAE 2018), Timisoara, Romania.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3