Solvability Criteria for Uncertain Differential Equations and Their Applicability in an Economic Lot-Size Model with a Type-2 Interval Phenomenon

Author:

Rahaman Mostafijur1ORCID,Haque Rakibul2ORCID,Alam Shariful1ORCID,Zupok Sebastian3,Salahshour Soheil456,Azizzadeh Fariba7,Mondal Sankar Prasad2

Affiliation:

1. Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India

2. Department of Applied Mathematics, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia 741249, India

3. Faculty of Social Sciences and Computer Science, Wyzsza Szkoła Biznesu National Louis University, 33-300 Nowy Sacz, Poland

4. Faculty of Engineering and Natural Sciences, Bahcesehir University, 34353 Istanbul, Turkey

5. Department of Computer Science and Mathematics, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon

6. Faculty of Engineering and Natural Sciences, Istanbul Okan University, 34959 Istanbul, Turkey

7. Department of Management, Islamic Azad University, Urmia 57169-6389, Iran

Abstract

Interval numbers comprise potential fields of application and describe the imprecision brought on by the flexible nature of data between boundaries. The recently added type-2 interval number allows a more thorough understanding of interval numbers. Differential equations are commonly employed in mathematical models to handle dynamic problems. It is essential to provide theories of differential equations to describe these models in an ambiguous environment controlled by type-2 interval numbers. This study proposes the type-2 interval context solvability requirements for the initial-valued first differential equation. The conditions for the solution’s existence and uniqueness must be met before a brief manifestation of the solution under generalized Hukuhara differentiation occurs. An economic order quantity model analysis in a type-2 interval scenario uses a generalized Hukuhara differentiation approach.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. Moore, R.E., Kearfott, R.B., and Cloud, M.J. (2009). Introduction to Interval Analysis, Society for Industrial and Applied Mathematics.

2. Aubin, J.P., and Frankowska, H. (2009). Set-Valued Analysis, Birkhäuser.

3. Lakshmikantham, V., Bhaskar, T.G., and Devi, J.V. (2006). Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers Ltd.

4. Complex interval arithmetic using polar form;Candau;Reliab. Comput.,2006

5. Interval maps from Cuntz–Krieger algebras;Ramos;J. Math. Anal. Appl.,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3