Application of Symmetric Explicit Symplectic Integrators in Non-Rotating Konoplya and Zhidenko Black Hole Spacetime

Author:

He Guandong12,Huang Guoqing12,Hu Airong12

Affiliation:

1. Department of Physics, Nanchang University, Nanchang 330031, China

2. Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031, China

Abstract

In this study, we construct symmetric explicit symplectic schemes for the non-rotating Konoplya and Zhidenko black hole spacetime that effectively maintain the stability of energy errors and solve the tangent vectors from the equations of motion and the variational equations of the system. The fast Lyapunov indicators and Poincaré section are calculated to verify the effectiveness of the smaller alignment index. Meanwhile, different algorithms are used to separately calculate the equations of motion and variation equations, resulting in correspondingly smaller alignment indexes. The numerical results indicate that the smaller alignment index obtained by using a global symplectic algorithm is the fastest method for distinguishing between regular and chaotic cases. The smaller alignment index is used to study the effects of parameters on the dynamic transition from order to chaos. If initial conditions and other parameters are appropriately chosen, we observe that an increase in energy E or the deformation parameter η can easily lead to chaos. Similarly, chaos easily occurs when the angular momentum L is small enough or the magnetic parameter Q stays within a suitable range. By varying the initial conditions of the particles, a distribution plot of the smaller alignment in the X–Z plane of the black hole is obtained. It is found that the particle orbits exhibit a remarkably rich structure. Researching the motion of charged particles around a black hole contributes to our understanding of the mechanisms behind black hole accretion and provides valuable insights into the initial formation process of an accretion disk.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3