Improving Performance of Differential Evolution Using Multi-Population Ensemble Concept

Author:

Bashir Aadil1,Abbas Qamar1ORCID,Mahmood Khalid2ORCID,Alfarhood Sultan3ORCID,Safran Mejdl3ORCID,Ashraf Imran4ORCID

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, International Islamic University, Islamabad 44000, Pakistan

2. Institute of Computing and Information Technology, Gomal University, D.I.Khan, 29220, Pakistan

3. Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia

4. Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Differential evolution (DE) stands out as a straightforward yet remarkably powerful evolutionary algorithm employed for real-world problem-solving purposes. In the DE algorithm, few parameters are used, and the population is evolved by applying various operations. It is difficult in evolutionary computation algorithms to maintain population diversity. The main issue is the sub-population of the DE algorithm that helps improve convergence speed and escape from the local optimum. Evolving sub-populations by maintaining diversity is an important issue in the literature that is considered in this research. A solution is proposed that uses sub-populations to promote greater diversity within the population and improve the algorithm performance. DE, heterogeneous distributed differential evolution (HDDE), multi-population ensemble differential evolution (MPEDE), and the proposed improved multi-population ensemble differential evolution (IMPEDE) are implemented using parameter settings; population sizes of 100 NP, 150 NP, and 200 NP; and dimensions of 10D, 30D, and 50D for performance comparison. Different combinations of mutations are used to generate the simulated results. The simulation results are generated using 1000, 3000, and 5000 iterations. Experimental outcomes show the superior results of the proposed IMPEDE over existing algorithms. The non-parametric significance Friedman test confirms that there is a significant difference in the performance of the proposed algorithm and other algorithms used in this study by considering a 0.05 level of significance using six benchmark functions.

Funder

Researchers Supporting Project

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3