Problem Characteristics and Dynamic Search Balance-Based Artificial Bee Colony for the Optimization of Two-Tiered WSN Lifetime with Relay Nodes Deployment

Author:

Yu WenjieORCID,Li Xiangmei,Zeng Zhi,Luo Miao

Abstract

Lifetime optimization is one of the key issues among the many challenges of wireless sensor networks. The introduction of a small number of high-performance relay nodes can effectively improve the quality of the network services. However, how to deploy these nodes reasonably to fully enhance the network lifetime becomes a very difficult problem. In this study, a modified and enhanced Artificial Bee Colony is proposed to maximize the lifetime of a two-tiered wireless sensor network by optimal deployment of relay nodes. First, the dimension of the problem is introduced into the candidate search equation and the local search is adjusted according to the fitness of the problem and number of iterations, which helps to balance the exploration and exploitation ability of the algorithm. Second, in order to prevent the algorithm from falling into local convergence, a dynamic search balance strategy is proposed instead of the scout bee phase in the original Artificial Bee Colony. Then, a feasible solution formation method is proposed to ensure that the relay nodes can form the upper-layer backbone of the network. Finally, we employ this algorithm on a test dataset obtained from the literature. The simulation results show that the proposed algorithm for two-tiered wireless sensor network lifetime optimization can obtain higher and stable average network lifetime and more reasonable relay node deployment compared to other classical and state-of-the-art algorithms, verifying the competitive performance of the proposed algorithm.

Funder

Science and Technology Planning Project of Sichuan Province

Major Science and Technology Special Projects of Sichuan Province

Sichuan Province Key Research and Development Plan Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3