An Information Theoretic Interpretation to Deep Neural Networks

Author:

Xu XiangxiangORCID,Huang Shao-LunORCID,Zheng Lizhong,Wornell Gregory W.ORCID

Abstract

With the unprecedented performance achieved by deep learning, it is commonly believed that deep neural networks (DNNs) attempt to extract informative features for learning tasks. To formalize this intuition, we apply the local information geometric analysis and establish an information-theoretic framework for feature selection, which demonstrates the information-theoretic optimality of DNN features. Moreover, we conduct a quantitative analysis to characterize the impact of network structure on the feature extraction process of DNNs. Our investigation naturally leads to a performance metric for evaluating the effectiveness of extracted features, called the H-score, which illustrates the connection between the practical training process of DNNs and the information-theoretic framework. Finally, we validate our theoretical results by experimental designs on synthesized data and the ImageNet dataset.

Funder

National Science Foundation

Office of Naval Research

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference56 articles.

1. Language Models are Few-Shot Learners;Brown,2020

2. Mastering the game of Go with deep neural networks and tree search

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Information geometry of evolution of neural network parameters while training;Neurocomputing;2024-09

2. Universal Features for High-Dimensional Learning and Inference;Foundations and Trends® in Communications and Information Theory;2024

3. Robust Cross-Modal Remote Sensing Image Retrieval via Maximal Correlation Augmentation;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Sequential Dependence Decomposition and Feature Learning;2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton);2023-09-26

5. Regularized Estimation of Information via Canonical Correlation Analysis on a Finite-Dimensional Feature Space;IEEE Transactions on Information Theory;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3