A Robust Feature Extraction Model for Human Activity Characterization Using 3-Axis Accelerometer and Gyroscope Data

Author:

Ahmed Bhuiyan RaselORCID,Ahmed Nadeem,Amiruzzaman MdORCID,Islam Md RashedulORCID

Abstract

Human Activity Recognition (HAR) using embedded sensors in smartphones and smartwatch has gained popularity in extensive applications in health care monitoring of elderly people, security purpose, robotics, monitoring employees in the industry, and others. However, human behavior analysis using the accelerometer and gyroscope data are typically grounded on supervised classification techniques, where models are showing sub-optimal performance for qualitative and quantitative features. Considering this factor, this paper proposes an efficient and reduce dimension feature extraction model for human activity recognition. In this feature extraction technique, the Enveloped Power Spectrum (EPS) is used for extracting impulse components of the signal using frequency domain analysis which is more robust and noise insensitive. The Linear Discriminant Analysis (LDA) is used as dimensionality reduction procedure to extract the minimum number of discriminant features from envelop spectrum for human activity recognition (HAR). The extracted features are used for human activity recognition using Multi-class Support Vector Machine (MCSVM). The proposed model was evaluated by using two benchmark datasets, i.e., the UCI-HAR and DU-MD datasets. This model is compared with other state-of-the-art methods and the model is outperformed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3