Biomedical Signal Acquisition Using Sensors under the Paradigm of Parallel Computing

Author:

Moreno Escobar Jesús JaimeORCID,Morales Matamoros OswaldoORCID,Tejeida Padilla RicardoORCID,Chanona Hernández Liliana,Posadas Durán Juan Pablo Francisco,Pérez Martínez Ana Karen,Lina Reyes IxchelORCID,Quintana Espinosa Hugo

Abstract

There are several pathologies attacking the central nervous system and diverse therapies for each specific disease. These therapies seek as far as possible to minimize or offset the consequences caused by these types of pathologies and disorders in the patient. Therefore, comprehensive neurological care has been performed by neurorehabilitation therapies, to improve the patients’ life quality and facilitating their performance in society. One way to know how the neurorehabilitation therapies contribute to help patients is by measuring changes in their brain activity by means of electroencephalograms (EEG). EEG data-processing applications have been used in neuroscience research to be highly computing- and data-intensive. Our proposal is an integrated system of Electroencephalographic, Electrocardiographic, Bioacoustic, and Digital Image Acquisition Analysis to provide neuroscience experts with tools to estimate the efficiency of a great variety of therapies. The three main axes of this proposal are: parallel or distributed capture, filtering and adaptation of biomedical signals, and synchronization in real epochs of sampling. Thus, the present proposal underlies a general system, whose main objective is to be a wireless benchmark in the field. In this way, this proposal could acquire and give some analysis tools for biomedical signals used for measuring brain interactions when it is stimulated by an external system during therapies, for example. Therefore, this system supports extreme environmental conditions, when necessary, which broadens the spectrum of its applications. In addition, in this proposal sensors could be added or eliminated depending on the needs of the research, generating a wide range of configuration limited by the number of CPU cores, i.e., the more biosensors, the more CPU cores will be required. To validate the proposed integrated system, it is used in a Dolphin-Assisted Therapy in patients with Infantile Cerebral Palsy and Obsessive–Compulsive Disorder, as well as with a neurotypical one. Event synchronization of sample periods helped isolate the same therapy stimulus and allowed it to be analyzed by tools such as the Power Spectrum or the Fractal Geometry.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3