Transfer Learning for Wireless Fingerprinting Localization Based on Optimal Transport

Author:

Bai SiqiORCID,Luo Yongjie,Wan Qun

Abstract

Wireless fingerprinting localization (FL) systems identify locations by building radio fingerprint maps, aiming to provide satisfactory location solutions for the complex environment. However, the radio map is easy to change, and the cost of building a new one is high. One research focus is to transfer knowledge from the old radio maps to a new one. Feature-based transfer learning methods help by mapping the source fingerprint and the target fingerprint to a common hidden domain, then minimize the maximum mean difference (MMD) distance between the empirical distributions in the latent domain. In this paper, the optimal transport (OT)-based transfer learning is adopted to directly map the fingerprint from the source domain to the target domain by minimizing the Wasserstein distance so that the data distribution of the two domains can be better matched and the positioning performance in the target domain is improved. Two channel-models are used to simulate the transfer scenarios, and the public measured data test further verifies that the transfer learning based on OT has better accuracy and performance when the radio map changes in FL, indicating the importance of the method in this field.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Environment Topology Oriented Fingerprint Localization in Indoor NLoS Scenarios;IEEE Communications Letters;2024-03

2. Domain Adaptation for Localization Using Combined Autoencoder and Gradient Reversal Layer in Dynamic IoT Environment;IEEE Transactions on Network Science and Engineering;2024-01

3. Location-free Indoor Radio Map Estimation using Transfer learning;2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring);2023-06

4. Improving Fingerprint-Based Positioning by Using IEEE 802.11mc FTM/RTT Observables;Sensors;2022-12-27

5. Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications;2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC);2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3