ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China

Author:

Chen QiORCID,Zhao Zhifang,Zhou Jiaxi,Zhu Ruifeng,Xia Jisheng,Sun Tao,Zhao Xin,Chao Jiangqin

Abstract

Hydrothermal alteration minerals are an effective prospecting indicator. Advanced spaceborne thermal emission and reflection radiometer (ASTER) satellite data are some of the most commonly adopted multispectral data for the mapping of hydrothermal alteration minerals. Compared to multispectral data, hyperspectral data have stronger ground object recognition ability. Chinese Gaofen-5 (GF-5) is the first hyperspectral satellite independently developed by China that has the advantages of both wide-width and high-spectral-resolution technology. However, the mapping ability of GF5 data for hydrothermal alteration minerals requires further study. In this study, ASTER and GF-5 satellite data were implemented to map hydrothermal alteration minerals in the Longtoushan Pb-Zn deposit, SW China. Selective principal component analysis (SPCA) technology was employed to map iron oxide/hydroxides, argillic, quartz, and carbonate minerals at the pixel level using ASTER data, and the mixture tuned matched filtering (MTMF) method was implemented for the extracted hematite, kaolinite, calcite, and dolomite at the sub-pixel level using GF-5 data. When mapping the hydrothermal alteration minerals, the distribution features of the hydrothermal alteration minerals from the Longtoushan Pb-Zn deposit were systematically revealed. A comprehensive field investigation and petrographic study were conducted to verify the extraction accuracy of the hydrothermal alteration minerals. The results showed that the overall accuracies for the ASTER and GF-5 data were 82.6 and 92.9 and that the kappa coefficients were 0.78 and 0.90, respectively. This indicates that the GF-5 data are able to map hydrothermal alteration minerals well and that they can be promoted as a hyperspectral data source for mapping systematic hydrothermal alteration minerals in the future.

Funder

National Natural Science Foundation of China

the Joint Fund of Science Technology Department of Yunnan Province and Yunnan University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3