Radar Signal Intrapulse Modulation Recognition Based on a Denoising-Guided Disentangled Network

Author:

Zhang XiangliORCID,Zhang Jiazhen,Luo Tianze,Huang Tianye,Tang Zuping,Chen Ying,Li Jinsheng,Luo DapengORCID

Abstract

Accurate recognition of radar modulation mode helps to better estimate radar echo parameters, thereby occupying an advantageous position in the radar electronic warfare (EW). However, under low signal-to-noise ratio environments, recent deep-learning-based radar signal recognition methods often perform poorly due to the unsuitable denoising preprocess. In this paper, a denoising-guided disentangled network based on an inception structure is proposed to simultaneously complete the denoising and recognition of radar signals in an end-to-end manner. The pure radar signal representation (PSR) is disentangled from the noise signal representation (NSR) through a feature disentangler and used to learn a radar signal modulation recognizer under low-SNR environments. Signal noise mutual information loss is proposed to enlarge the gap between the PSR and the NSR. Experimental results demonstrate that our method can obtain a recognition accuracy of 98.75% in the −8 dB SNR and 89.25% in the −10 dB environment of 12 modulation formats.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformer-based models for intrapulse modulation recognition of radar waveforms;Engineering Applications of Artificial Intelligence;2024-10

2. A Novel Dual-Component Radar-Signal Modulation Recognition Method Based on CNN-ST;Applied Sciences;2024-06-25

3. On the anti‐intercept features of noise radars;IET Radar, Sonar & Navigation;2024-04-19

4. JDMR-Net: Joint Detection and Modulation Recognition Networks for LPI Radar Signals;IEEE Transactions on Aerospace and Electronic Systems;2023-12

5. DTFTCNet: Radar Modulation Recognition With Deep Time-Frequency Transformation;IEEE Transactions on Cognitive Communications and Networking;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3