Unsupervised Generative Adversarial Network with Background Enhancement and Irredundant Pooling for Hyperspectral Anomaly Detection

Author:

Li Zhongwei,Shi Shunxiao,Wang Leiquan,Xu MingmingORCID,Li Luyao

Abstract

Lately, generative adversarial networks (GAN)-based methods have drawn extensive attention and achieved a promising performance in the field of hyperspectral anomaly detection (HAD) owing to GAN’s powerful data generation capability. However, without considering the background spatial features, most of these methods can not obtain a GAN with a strong background generation ability. Besides, they fail to address the hyperspectral image (HSI) redundant information disturbance problem in the anomaly detection part. To solve these issues, the unsupervised generative adversarial network with background spatial feature enhancement and irredundant pooling (BEGAIP) is proposed for HAD. To make better use of features, spatial and spectral features union extraction idea is also applied to the proposed model. To be specific, in spatial branch, a new background spatial feature enhancement way is proposed to get a data set containing relatively pure background information to train GAN and reconstruct a more vivid background image. In a spectral branch, irredundant pooling (IP) is invented to remove redundant information, which can also enhance the background spectral feature. Finally, the features obtained from the spectral and spatial branch are combined for HAD. The experimental results conducted on several HSI data sets display that the model proposed acquire a better performance than other relevant algorithms.

Funder

Joint Funds of the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 基于空谱背景重构的半监督高光谱异常检测;Laser & Optoelectronics Progress;2023

2. Subfeature Ensemble-Based Hyperspectral Anomaly Detection Algorithm;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3