Summer Nighttime Anomalies of Ionospheric Electron Content at Midlatitudes: Comparing Years of Low and High Solar Activities Using Observations and Tidal/Planetary Wave Features

Author:

Yin YuORCID,González-Casado GuillermoORCID,Rovira-Garcia AdriàORCID,Juan José MiguelORCID,Sanz JaumeORCID,Shao YixieORCID

Abstract

In this study, midlatitude summer nighttime anomalies (MSNAs) are analyzed via observations and tidal/planetary wave features using measurements from the Formosat-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (F3C) for 2007, a year with low solar activity, and 2014, a year with high solar activity. The total ionospheric electron content, ECion, an integrated quantity derived from F3C measurements, was used to compare the observational data. The ECion values were derived from accurate radio-occultation-retrieved electron density profiles without assuming spherical symmetry and from a model that separated the ground total electron content into the plasmaspheric and the ionospheric electron content contributions. An analysis of the ECion data set confirmed that MSNAs were present in three different regions of the world for the months surrounding the local summer solstice during both 2007 and 2014. In the southern hemisphere, the so-called Weddell Sea Anomaly showed a maximum increase in ECion, measured as the difference between nighttime and midday values, that was more than three times that in the northern MSNAs. For each individual MSNA, the corresponding maximum increases in electron content were similar between the two years analyzed, so they were not significantly affected by solar activity. Then, linear least-square fit to the frequency–wave number basis functions was used to derive the tidal and planetary wave components contributing to MSNAs. The main component that appears to produce the Weddell Sea Anomaly is D0, followed by SPW1, DW2, and DE1, in this order, which make secondary but still relevant contributions. The presence of MSNAs in the northern hemisphere was clearly supported by the migrating tide SW2 in combination with DE1. SW2 also supported an early morning MSNA being observed in the northern hemisphere. The main tidal and planetary wave signatures producing the MSNAs did not significantly differ between 2007 and 2014.

Funder

Spanish MCIN and the European Comunity FEDER

China Scholarship Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3