Abstract
A near-real-time automatic detection system, based on the synergy of continuous measurements taken by a ceilometer and a photometer, has been implemented in order to detect lofted atmospheric aerosol layers and estimate the aerosol load. When heavy-loaded conditions are detected (defined by a significant deviation of the optical properties from a 10-year climatology), obtained for aerosol layers above 2500 m, an automatic alert is sent to scientists of the Romanian Lidar Network (ROLINET) to further monitor the event. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back-trajectory calculations are used to establish the possible pollution source. The aerosol transport events are considered to be major when various optical properties provided by the photometer are found outside the climatological values. The aerosol types over the three years for all the events identified revealed that the contribution to the pollution was 31%, 9%, and 60% from marine, dust, and continental types. Considering only the ‘outside climatology limits’ events, the respective contribution was 15%, 12%, and 73% for marine, dust, and continental types, respectively.
Funder
Ministry of Research and Innovation
Romanian National Authority for Scientific Research and Innovation
European Regional Development Fund
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献