A New Spatial Filtering Algorithm for Noisy and Missing GNSS Position Time Series Using Weighted Expectation Maximization Principal Component Analysis: A Case Study for Regional GNSS Network in Xinjiang Province

Author:

Li Wudong,Li Zhao,Jiang Weiping,Chen QusenORCID,Zhu Guangbin,Wang JianORCID

Abstract

Common Mode Error (CME) presents a kind of spatially correlated error that is widespread in regional Global Navigation Satellite System (GNSS) networks and should be eliminated during postprocessing of a GNSS position time series. Several spatiotemporal filtering methods have been developed to mitigate the effects of CME. However, such methodologies become inappropriate when missing and noisy data exists. In this research, we introduce a novel spatial filtering algorithm called Weighted Expectation Maximization Principal Component Analysis (WEMPCA) for detecting and removing CME from noisy GNSS position time series with missing values, among which formal errors of daily GNSS solutions are utilized to weight the input data. Compared with traditional PCA and the special case of EMPCA, simulation experiments demonstrate that the new WEMPCA algorithm always has outstanding performance over others. The WEMPCA algorithm was then successfully used to extract the CME from real noisy and missing GNSS position time series in Xinjiang province. Our results show that only the first principal component exhibits significant spatial response, with average values of 70.11%, 66.53%, and 52.45% for North, East, and Up (NEU) components, respectively, indicating that it represents the CME of this region. After removing CME, the canonical correlation coefficients and root mean square error of GNSS residual time series, as well as the amplitudes of power-law noises (PLN), are obviously decreased in all three directions. However, the white noise (WN) amplitudes are found to diminish exclusively in the North and East component, not in the Up components. Moreover, the average velocity differences before and after filtering CME are 0.19 mm/year, 0.03 mm/year, and −0.56 mm/year for the NEU components, respectively, indicating that CME has an influence on the GNSS station velocity estimation. The velocity uncertainty is also reduced by 43.51%, 38.64%, and 40.39% on average for the NEU components, respectively, implying that the velocity estimates are more reliable and accurate after removing CME. Therefore, we conclude that the new WEMPCA approach provides an efficient solution to detect and mitigate CME from the noisy and missing GNSS position time series.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3