Integration of Sentinel-3 and MODIS Vegetation Indices with ERA-5 Agro-Meteorological Indicators for Operational Crop Yield Forecasting

Author:

Bojanowski Jędrzej S.ORCID,Sikora Sylwia,Musiał Jan P.ORCID,Woźniak EdytaORCID,Dąbrowska-Zielińska KatarzynaORCID,Slesiński PrzemysławORCID,Milewski Tomasz,Łączyński Artur

Abstract

Timely crop yield forecasts at a national level are substantial to support food policies, to assess agricultural production, and to subsidize regions affected by food shortage. This study presents an operational crop yield forecasting system for Poland that employs freely available satellite and agro-meteorological products provided by the Copernicus programme. The crop yield predictors consist of: (1) Vegetation condition indicators provided daily by Sentinel-3 OLCI (optical) and SLSTR (thermal) imagery, (2) a backward extension of Sentinel-3 data (before 2018) derived from cross-calibrated MODIS data, and (3) air temperature, total precipitation, surface radiation, and soil moisture derived from ERA-5 climate reanalysis generated by the European Centre for Medium-Range Weather Forecasts. The crop yield forecasting algorithm is based on thermal time (growing degree days derived from ERA-5 data) to better follow the crop development stage. The recursive feature elimination is used to derive an optimal set of predictors for each administrative unit, which are ultimately employed by the Extreme Gradient Boosting regressor to forecast yields using official yield statistics as a reference. According to intensive leave-one-year-out cross validation for the 2000–2019 period, the relative RMSE for voivodships (NUTS-2) are: 8% for winter wheat, and 13% for winter rapeseed and maize. Respectively, for municipalities (LAU) it equals 14% for winter wheat, 19% for winter rapeseed, and 27% for maize. The system is designed to be easily applicable in other regions and to be easily adaptable to cloud computing environments such as Data and Information Access Services (DIAS) or Amazon AWS, where data sets from the Copernicus programme are directly accessible.

Funder

National Centre for Research and Development

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3