Abstract
Deep learning has been used in inverse synthetic aperture radar (ISAR) imaging to improve resolution performance, but there still exist some problems: the loss of weak scattering points, over-smoothed imaging results, and the universality and generalization. To address these problems, an ISAR resolution enhancement method of exploiting a generative adversarial network (GAN) is proposed in this paper. We adopt a relativistic average discriminator (RaD) to enhance the ability of the network to describe target details. The proposed loss function is composed of feature loss, adversarial loss, and absolute loss. The feature loss is used to get the main characteristics of the target. The adversarial loss ensures that the proposed GAN recovers more target details. The absolute loss is adopted to make the imaging results not over-smoothed. Experiments based on simulated and measured data under different conditions demonstrate that the proposed method has good imaging performance. In addition, the universality and generalization of the proposed GAN are also well verified.
Funder
National Nature Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献