The Behavior of VLF/LF Variations Associated with Geomagnetic Activity, Earthquakes, and the Quiet Condition Using a Neural Network Approach

Author:

Popova Irina,Rozhnoi Alexandr,Solovieva Maria,Chebrov Danila,Hayakawa Masashi

Abstract

The neural network approach is proposed for studying very-low- and low-frequency (VLF and LF) subionospheric radio wave variations in the time vicinities of magnetic storms and earthquakes, with the purpose of recognizing anomalies of different types. We also examined the days with quiet geomagnetic conditions in the absence of seismic activity, in order to distinguish between the disturbed signals and the quiet ones. To this end, we trained the neural network (NN) on the examples of the representative database. The database included both the VLF/LF data that was measured during four-year monitoring at the station in Petropavlovsk-Kamchatsky, and the parameters of seismicity in the Kuril-Kamchatka and Japan regions. It was shown that the neural network can distinguish between the disturbed and undisturbed signals. Furthermore, the prognostic behavior of the VLF/LF variations indicative of magnetic and seismic activity has a different appearance in the time vicinity of the earthquakes and magnetic storms.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3