Dual THz Wave and X-ray Generation from a Water Film under Femtosecond Laser Excitation

Author:

Huang Hsin-hui,Nagashima Takeshi,Hsu Wei-hung,Juodkazis Saulius,Hatanaka KojiORCID

Abstract

Simultaneous emission of the THz wave and hard X-ray from thin water free-flow was induced by the irradiation of tightly-focused femtosecond laser pulses (35 fs, 800 nm, 500 Hz) in air. Intensity measurements of the THz wave and X-ray were carried out at the same time with time-domain spectroscopy (TDS) based on electro-optic sampling with a ZnTe(110) crystal and a Geiger counter, respectively. Intensity profiles of the THz wave and X-ray emission as a function of the solution flow position along the incident laser axis at the laser focus show that the profile width of the THz wave is broader than that of the X-ray. Furthermore, the profiles of the THz wave measured in reflection and transmission directions show different features and indicate that THz wave emission is, under single-pulse excitation, induced mainly in laser-induced plasma on the water flow surface. Under double-pulse excitation with a time separation of 4.6 ns, 5–10 times enhancements of THz wave emission were observed. Such dual light sources can be used to characterise materials, as well as to reveal the sequence of material modifications under intense laser pulses.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference60 articles.

1. Multiple Photon Infrared Laser Photophysics and Photochemistry,1985

2. Science of Superstrong Field Interactions,2002

3. Multiphoton Processes and Attosecond Physics,2012

4. Femtosecond x rays from laser-plasma accelerators

5. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3