CO2 Hydrogenation to Methanol by a Liquid-Phase Process with Alcoholic Solvents: A Techno-Economic Analysis

Author:

Nieminen Harri,Laari Arto,Koiranen Tuomas

Abstract

Synthesis of methanol from recirculated CO2 and H2 produced by water electrolysis allows sustainable production of fuels and chemical storage of energy. Production of renewable methanol has, however, not achieved commercial breakthrough, and novel methods to improve economic feasibility are needed. One possibility is to alter the reaction route to methanol using catalytic alcoholic solvents, which makes the process possible at lower reaction temperatures. To estimate the techno-economic potential of this approach, the feasibilities of the conventional gas-phase process and an alternative liquid-phase process employing 2-butanol or 1-butanol solvents were compared by means of flowsheet modelling and economic analysis. As a result, it was found that despite improved methanol yield, the presence of solvent adds complexity to the process and increases separation costs due to the high volatility of the alcohols and formation of azeotropes. Hydrogen, produced from wind electricity, was the major cost in all processes. The higher cost of the present, non-optimized liquid-phase process is largely explained by the heat required in separation. If this heat could be provided by heat integration, the resulting production costs approach the costs of the gas-phase process. It is concluded that the novel reaction route provides promising possibilities, but new breakthroughs in process synthesis, integration, optimization, and catalysis are needed before the alcoholic solvent approach surpasses the traditional gas-phase process.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference56 articles.

1. The teraton challenge. A review of fixation and transformation of carbon dioxide

2. The Solar Refinery;Schlögl,2013

3. Beyond Oil and Gas: The Methanol Economy;Olah,2009

4. Recycling of carbon dioxide to methanol and derived products – closing the loop

5. From Raw Materials to Methanol, Chemicals and Fuels;Offermanns,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3