Author:
Yu Jiangnan,Liao Jialin,Huang Zhenxing,Wu Peng,Zhao Mingxing,Liu Chunmei,Ruan Wenquan
Abstract
The bioproduction of caproate from organic waste by anaerobic mixed culture is a very attractive technology for upgrading low-grade biomass to a high-value resource. However, the caproate production process is markedly restricted by the feedback inhibition of caproate. In this study, four types of anion-exchange resin were investigated for their enhancing capability in caproate fermentation of anaerobic mixed culture. The strong base anion-exchange resin D201 showed the highest adsorption capacity (62 mg/g), selectivity (7.50), and desorption efficiency (88.2%) for caproate among the test resins. Subsequently, the optimal desorption temperature and NaOH concentration of eluent for D201 were determined. The adsorption and desorption efficiency of D201 remained stable during eight rounds of the adsorption–desorption cycle, indicating a satisfactory reusability of D201. Finally, performances of caproate fermentation with and without resin adsorption for carboxylate were evaluated. The results demonstrated that the final concentration of caproate was improved from 12.43 ± 0.29 g/L (without adsorption) to 17.30 ± 0.13 g/L (with adsorption) and the maximum caproate production rate was improved from 0.60 ± 0.01 g/L/d to 2.03 ± 0.02 g/L/d. In the group with adsorption, the cumulative caproate production was increased to 29.10 ± 0.33 g/L broth, which was 134% higher than that of the control group. Therefore, this study provides effective approaches to enhance caproate production.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
National Key Research and Development Program of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献