A Fuzzy Multicriteria Decision-Making (MCDM) Model for Sustainable Supplier Evaluation and Selection Based on Triple Bottom Line Approaches in the Garment Industry

Author:

Wang Chia-Nan,Yang Ching-Yu,Cheng Hung-Chun

Abstract

Vietnam’s garment industry is facing many challenges, including domestic competition and the global market. The free trade agreement, which Vietnam signed, includes environmental barriers, sustainable development, and green development. The agreement further requires businesses to make efforts to improve not only product quality but also the production process. In cases when enterprises cause environmental pollution in the production process and do not apply solutions to reduce waste, save energy, and natural resources, there is a risk of no longer receiving orders or orders being rejected, especially orders from the world’s major branded garment companies. In this research, the authors propose a multicriteria decision-making model (MCDM) for optimizing the supplier evaluation and selection process for the garment industry using sustainability considerations. In the first stage of this research, all criteria affecting supplier selection are determined by a triple bottom line (TBL) model (economic, environmental, and social aspects) and literature reviews; in addition, the fuzzy analytic hierarchy process (FAHP) method was utilized to identify the weight of all criteria in the second stage. The technique for order preference by similarity to an ideal solution (TOPSIS) is a multicriteria decision analysis method, which is used for ranking potential suppliers in the final stage. As a result, decision-making unit 10 (DMU/10) is found to be the best supplier for the garment industry. The contribution of this research includes modeling the supplier selection decision problem based on the TBL concept. The proposed model also addresses different complex problems in supplier selection, is a flexible design model for considering the evaluation criteria, and is applicable to supplier selection in other industries.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3