Passive Location for 5G OFDM Radiation Sources Based on Virtual Synthetic Aperture

Author:

Zhang Tong1,Zhang Xin1ORCID,Yang Qiang1ORCID

Affiliation:

1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Passive location technology has been greatly developed because of its low power consumption, long detection distance, good concealment, and strong anti-interference ability. Orthogonal frequency-division multiplexing (OFDM) is an efficient multi-carrier transmission technology, which is an important signal form of 5G communication. Researching passive locations for OFDM signals can realize the location of base stations, which is of great significance in the military. Space-borne passive location technology has a contradiction between wide coverage and high precision. Therefore, a single-satellite passive location algorithm for OFDM radiation sources based on the virtual synthetic aperture is proposed. The algorithm introduces virtual synthetic aperture technology, using antenna movement to accumulate data coherently over a long time period and synthesizing a long azimuth virtual aperture. In addition, it utilizes fast Fourier transform (FFT) to extract phase information at a specific frequency based on the multi-carrier modulation technology of the OFDM signal. Pilot technology of the communication system is used for phase compensation and noise reduction. Thus, the azimuth linear frequency modulation (LFM) signal containing the location information of the radiation source is obtained. The radiation source location can be obtained by range searching and azimuth focusing. Simulation results verify the effectiveness of the algorithm and show that the algorithm can realize high-precision and wide-coverage location for the OFDM radiation sources using a single antenna, turning the hardware structure into software to reduce the cost and complexity of the system.

Funder

National Natural Science Foundation of China

Key R&D Program of Hainan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3