A Comparison of UAV-Derived Dense Point Clouds Using LiDAR and NIR Photogrammetry in an Australian Eucalypt Forest

Author:

Winsen Megan1ORCID,Hamilton Grant1

Affiliation:

1. School of Biology and Environmental Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia

Abstract

Light detection and ranging (LiDAR) has been a tool of choice for 3D dense point cloud reconstructions of forest canopy over the past two decades, but advances in computer vision techniques, such as structure from motion (SfM) photogrammetry, have transformed 2D digital aerial imagery into a powerful, inexpensive and highly available alternative. Canopy modelling is complex and affected by a wide range of inputs. While studies have found dense point cloud reconstructions to be accurate, there is no standard approach to comparing outputs or assessing accuracy. Modelling is particularly challenging in native eucalypt forests, where the canopy displays abrupt vertical changes and highly varied relief. This study first investigated whether a remotely sensed LiDAR dense point cloud reconstruction of a native eucalypt forest completely reproduced canopy cover and accurately predicted tree heights. A further comparison was made with a photogrammetric reconstruction based solely on near-infrared (NIR) imagery to gain some insight into the contribution of the NIR spectral band to the 3D SfM reconstruction of native dry eucalypt open forest. The reconstructions did not produce comparable canopy height models and neither reconstruction completely reproduced canopy cover nor accurately predicted tree heights. Nonetheless, the LiDAR product was more representative of the eucalypt canopy than SfM-NIR. The SfM-NIR results were strongly affected by an absence of data in many locations, which was related to low canopy penetration by the passive optical sensor and sub-optimal feature matching in the photogrammetric pre-processing pipeline. To further investigate the contribution of NIR, future studies could combine NIR imagery captured at multiple solar elevations. A variety of photogrammetric pre-processing settings should continue to be explored in an effort to optimise image feature matching.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3