Daily Sea Ice Concentration Product over Polar Regions Based on Brightness Temperature Data from the HY-2B SMR Sensor

Author:

Wu Suhui123ORCID,Shi Lijian23ORCID,Zou Bin23,Zeng Tao23,Dong Zhaoqing4,Lu Dunwang123

Affiliation:

1. National Marine Environmental Forecasting Center, Beijing 100081, China

2. National Satellite Ocean Application Service, Beijing 100081, China

3. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China

4. College of Oceanography, Hohai University, Nanjing 210098, China

Abstract

Polar sea ice profoundly affects atmospheric and oceanic circulation and plays a significant role in climate change. Sea ice concentration (SIC) is a key geophysical parameter used to quantify these changes. In this study, we determined SIC products for the Arctic and Antarctic from 2019 to 2021 using data from the Chinese marine satellite Haiyang 2B (HY-2B) with an improved bootstrap algorithm. Then the results were compared with similar operational SIC products and ship-based data. Our findings demonstrate the effectiveness of the improved algorithm for accurately determining SIC in polar regions. Additionally, the results of the study demonstrate that the SIC product obtained through the improved bootstrap algorithm has a high correlation with other similar SIC products. The daily average SIC of the different products showed similar inter-annual trends for both the Arctic and Antarctic regions. Comparison of the different SIC products showed that the Arctic BT-SMR SIC was slightly lower than the BT-SSMIS and BT-AMSR2 SIC products, while the difference between Antarctic SIC products was more pronounced. The lowest MAE was between the BT-SSMIS SIC and BT-SMR SIC in both regions, while the largest MAE was between the NT-SMR and BT-SMR in the Arctic, and between the NT-SSMIS and BT-SMR in the Antarctic. The SIE and SIA time series showed consistent trends, with a greater difference in SIA than SIC and a slight difference in SIA between the BT-AMSR2 and BT-SMR in the Arctic. Evaluation of the different SIC products using ship-based observation data showed a high correlation between the BT-SMR SIC and the ship-based SIC of approximately 0.85 in the Arctic and 0.88 in the Antarctic. The time series of dynamic tie-points better reflected the seasonal variation in sea ice radiation characteristics. This study lays the foundation for the release of long-term SIC product series from the Chinese autonomous HY-2B satellite, which will ensure the continuity of polar sea ice records over the past 40 years despite potential interruptions.

Funder

National Key Research and Development of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3