LASSO (L1) Regularization for Development of Sparse Remote-Sensing Models with Applications in Optically Complex Waters Using GEE Tools

Author:

Cardall Anna Catherine1ORCID,Hales Riley Chad2ORCID,Tanner Kaylee Brooke2ORCID,Williams Gustavious Paul2ORCID,Markert Kel N.3ORCID

Affiliation:

1. Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA

2. Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA

3. Google LLC, Mountain View, CA 94043, USA

Abstract

Remote-sensing data are used extensively to monitor water quality parameters such as clarity, temperature, and chlorophyll-a (chl-a) content. This is generally achieved by collecting in situ data coincident with satellite data collections and then creating empirical water quality models using approaches such as multi-linear regression or step-wise linear regression. These approaches, which require modelers to select model parameters, may not be well suited for optically complex waters, where interference from suspended solids, dissolved organic matter, or other constituents may act as “confusers”. For these waters, it may be useful to include non-standard terms, which might not be considered when using traditional methods. Recent machine-learning work has demonstrated an ability to explore large feature spaces and generate accurate empirical models that do not require parameter selection. However, these methods, because of the large number of included terms involved, result in models that are not explainable and cannot be analyzed. We explore the use of Least Absolute Shrinkage and Select Operator (LASSO), or L1, regularization to fit linear regression models and produce parsimonious models with limited terms to enable interpretation and explainability. We demonstrate this approach with a case study in which chl-a models are developed for Utah Lake, Utah, USA., an optically complex freshwater body, and compare the resulting model terms to model terms from the literature. We discuss trade-offs between interpretability and model performance while using L1 regularization as a tool. The resulting model terms are both similar to and distinct from those in the literature, thereby suggesting that this approach is useful for the development of models for optically complex water bodies where standard model terms may not be optimal. We investigate the effect of non-coincident data, that is, the length of time between satellite image collection and in situ sampling, on model performance. We find that, for Utah Lake (for which there are extensive data available), three days is the limit, but 12 h provides the best trade-off. This value is site-dependent, and researchers should use site-specific numbers. To document and explain our approach, we provide Colab notebooks for compiling near-coincident data pairs of remote-sensing and in situ data using Google Earth Engine (GEE) and a second notebook implementing L1 model creation using scikitlearn. The second notebook includes data-engineering routines with which to generate band ratios, logs, and other combinations. The notebooks can be easily modified to adapt them to other locations, sensors, or parameters.

Funder

the Utah NASA Space Grant Consortium student fellowship program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3