Accurate and Serialized Dense Point Cloud Reconstruction for Aerial Video Sequences

Author:

Xu Shibiao1ORCID,Pan Bingbing2,Zhang Jiguang2ORCID,Zhang Xiaopeng2ORCID

Affiliation:

1. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Institute of Automation, Chinese Academy of Sciences, Beijing 100090, China

Abstract

Traditional multi-view stereo (MVS) is not applicable for the point cloud reconstruction of serialized video frames. Among them, the exhausted feature extraction and matching for all the prepared frames are time-consuming, and the scope of the search requires covering all the key frames. In this paper, we propose a novel serialized reconstruction method to solve the above issues. Specifically, a joint feature descriptors-based covisibility cluster generation strategy is designed to accelerate the feature matching and improve the performance of the pose estimation. Then, a serialized structure-from-motion (SfM) and dense point cloud reconstruction framework is designed to achieve high efficiency and competitive precision reconstruction for serialized frames. To fully demonstrate the superiority of our method, we collect a public aerial sequences dataset with referable ground truth for the dense point cloud reconstruction evaluation. Through a time complexity analysis and the experimental validation in this dataset, the comprehensive performance of our algorithm is better than the other compared outstanding methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference26 articles.

1. Lao, Y., Ait-Aider, O., and Bartoli, A. (2018, January 8–14). Rolling Shutter Pose and Ego-Motion Estimation Using Shape-from-Template. Proceedings of the ECCV, Munich, Germany.

2. Burst imaging for light-constrained structure-from-motion;Ravendran;IEEE Robot. Autom. Lett.,2021

3. Accurate, dense, and robust multiview stereopsis;Furukawa;TPAMI,2010

4. Wu, C. (July, January 29). Towards Linear-Time Incremental Structure from Motion. Proceedings of the 3DV, Seattle, WA, USA.

5. Schönberger, J.L., and Frahm, J.M. (June, January 27). Structure-from-Motion Revisited. Proceedings of the CVPR, Las Vegas, NV, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3