AVHRR NDVI Compositing Method Comparison and Generation of Multi-Decadal Time Series—A TIMELINE Thematic Processor

Author:

Asam Sarah1ORCID,Eisfelder Christina1,Hirner Andreas1ORCID,Reiners Philipp1ORCID,Holzwarth Stefanie1ORCID,Bachmann Martin1ORCID

Affiliation:

1. German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, Germany

Abstract

Remote sensing image composites are crucial for a wide range of remote sensing applications, such as multi-decadal time series analysis. The Advanced Very High Resolution Radiometer (AVHRR) instrument has provided daily data since the early 1980s at a spatial resolution of 1 km, allowing analyses of climate change-related environmental processes. For monitoring vegetation conditions, the Normalized Difference Vegetation Index (NDVI) is the most widely used metric. However, to actually enable such analyses, a consistent NDVI time series over the AVHRR time-span needs to be created. In this context, the aim of this study is to thoroughly assess the effect of different compositing procedures on AVHRR NDVI composites, as no standard procedure has been established. Thirteen different compositing methods have been implemented; daily, decadal, and monthly composites over Europe and Northern Africa have been calculated for the year 2007, and the resulting data sets have been thoroughly evaluated according to six criteria. The median approach was selected as the best-performing compositing algorithm considering all the investigated aspects. However, the combination of the NDVI value and viewing and illumination angles as the criteria for the best-pixel selection proved to be a promising approach, too. The generated NDVI time series, currently ranging from 1981–2018, shows a consistent behavior and close agreement to the standard MODIS NDVI product. The conducted analyses demonstrate the strong influence of compositing procedures on the resulting AVHRR NDVI composites.

Funder

TIMELINE project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3