Spatial-Spectral-Associative Contrastive Learning for Satellite Hyperspectral Image Classification with Transformers

Author:

Qin Jinchun12ORCID,Zhao Hongrui1

Affiliation:

1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China

2. State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China

Abstract

Albeit hyperspectral image (HSI) classification methods based on deep learning have presented high accuracy in supervised classification, these traditional methods required quite a few labeled samples for parameter optimization. When processing HSIs, however, artificially labeled samples are always insufficient, and class imbalance in limited samples is inevitable. This study proposed a Transformer-based framework of spatial–spectral–associative contrastive learning classification methods to extract both spatial and spectral features of HSIs by the self-supervised method. Firstly, the label information required for contrastive learning is generated by a spatial–spectral augmentation transform and image entropy. Then, the spatial and spectral Transformer modules are used to learn the high-level semantic features of the spatial domain and the spectral domain, respectively, from which the cross-domain features are fused by associative optimization. Finally, we design a classifier based on the Transformer. The invariant features distinguished from spatial–spectral properties are used in the classification of satellite HSIs to further extract the discriminant features between different pixels, and the class intersection over union is imported into the loss function to avoid the classification collapse caused by class imbalance. Conducting experiments on two satellite HSI datasets, this study verified the classification performance of the model. The results showed that the self-supervised contrastive learning model can extract effective features for classification, and the classification generated from this model is more accurate compared with that of the supervised deep learning model, especially in the average accuracy of the various classifications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3