A Pre-Pruning Quadtree Isolation Method with Changing Threshold for ICESat-2 Bathymetric Photon Extraction

Author:

Zhang Guoping123,Xing Shuai1,Xu Qing123,Li Pengcheng1,Wang Dandi1ORCID

Affiliation:

1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China

2. Key Laboratory of Spatiotemporal Perception and Intelligent Processing, Ministry of Natural Resources, Zhengzhou 450001, China

3. Collaborative Innovation Center of Geo-Information Technology for Smart Central Plains, Zhengzhou 450001, China

Abstract

The new generation of spaceborne laser altimeter, the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), which can simultaneously generate laser reflections on the water surface and underwater, is a potential data source for exploring water depth in nearshore environments. To achieve this scientific goal, accurate bathymetric photon extraction is needed. This study proposed a pre-pruning quadtree isolation (PQI) method with changing threshold. Firstly, the pre-pruning step is introduced. Photons are transformed into different levels in the isolated quadtree structure according to spatial density. Then, the frequency histogram of photon elevation and isolated level (IL) is generated, the IL thresholds in different depth ranges are calculated by the Otsu method, and the bathymetric photons are extracted. The results in the Culebra archive show that this method achieved a 92.71% F1 score. Noise rate and water depth are the main factors affecting the extraction of sounding photons. When the photon density gradually increases from 2–4 pts/m to 6–8 pts/m, the F1 score of PQI decreases by no more than two percent. In different depth ranges, the extraction results of PQI are also better than those of comparison methods. Therefore, PQI can provide reliable theoretical support for nearshore areas lacking water depth data.

Funder

the National Natural Science Foundation of China Projects

Henan Province

Ministry of Natural Resources

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3