A Sparsity-Invariant Model via Unifying Depth Prediction and Completion

Author:

Wang Shuling1ORCID,Jiang Fengze1,Gong Xiaojin1

Affiliation:

1. The College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

The development of a sparse-invariant depth completion model capable of handling varying levels of input depth sparsity is highly desirable in real-world applications. However, existing sparse-invariant models tend to degrade when the input depth points are extremely sparse. In this paper, we propose a new model that combines the advantageous designs of depth completion and monocular depth estimation tasks to achieve sparse invariance. Specifically, we construct a dual-branch architecture with one branch dedicated to depth prediction and the other to depth completion. Additionally, we integrate the multi-scale local planar module in the decoders of both branches. Experimental results on the NYU Depth V2 benchmark and the OPPO prototype dataset equipped with the Spot-iToF316 sensor demonstrate that our model achieves reliable results even in cases with irregularly distributed, limited or absent depth information.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3