Preliminary Study on Species Diversity and Community Characteristics of Gamasid Mites on Small Mammals in Three Parallel Rivers Area of China

Author:

Zhou Juan-Xiu,Guo Xian-Guo,Song Wen-Yu,Zhao Cheng-Fu,Zhang Zhi-Wei,Fan Rong,Chen Ting,Lv Yan,Yin Peng-Wu,Jin Dao-Chao

Abstract

(1) Background: Gamasid mites are a large group of arthropods, and some of them are of medical importance. Besides directly biting humans and causing dermatitis, some gamasid mites are the vector of rickettsialpox and potential vector of hemorrhagic fever with renal syndrome (HFRS). The Three Parallel Rivers Area of China is one of the hotspots of biodiversity research in the world, with complicated topographic landforms, different types of vegetation, special elevation gradients and high biodiversity. (2) Methods: Species richness (S): the Shannon–Wiener diversity index (H), Simpson dominance index (D) and Pielou evenness index (E) were used to analyze the basic community structure. The β diversity (Cody index) was used to reflect the diversity difference between any two adjacent elevation gradients. The method based on Preston’s lognormal model for species abundance distribution was used to estimate the total number of gamasid mite species. (3) Results: A total of 3830 small mammal hosts captured from the nine survey sites were identified as 44 species, 27 genera and nine families in five orders. Apodemus chevrieri, Eothenomys miletus and A. draco were the dominant host species with a total constituent ratio Cr = 52.037%. From the body surface of the hosts, 26,048 gamasid mites were collected and identified as 10 families, 21 genera and 82 species (excluding 847 unidentified specimens) with high species richness (S = 82) and diversity (H = 2.33). The three dominant mite species were Dipolaelaps anourosorecis, Laelaps nuttalli and L. echidninus, with a total Cr = 64.46% (16,791/26,048). There are significant differences in the species composition, species diversity and dominant species of gamasid mites on different hosts. The species diversity of the mite community fluctuated greatly in different elevation gradients. The highest peaks of species richness and β diversity appeared at altitudes of 3000–3500 m (S = 42) and 1500–2000 m (β = 17.5), respectively. The species abundance distribution of the mites was successfully fitted by Preston’s lognormal model with S^(R)=19e−[0.22(R−0)]2 (α = 0.22, R2 = 0.9879). Based on fitting the theoretical curve by Preston’s model, the total number of gamasid mite species was estimated to be 153 species. (4) Conclusions: Gamasid mites on small mammals are abundant with complex community structures and high species diversity in the Three Parallel Rivers Area of China. There is an apparent community heterogeneity of the mites on different hosts and in different environments.

Funder

Major Science and Technique Programs in Yunnan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference78 articles.

1. Yin, S.G., Bei, N.X., and Chen, W.P. (2013). Soil Gamasida from Northeast China, China Agricultural Press. (In Chinese).

2. Infestation and distribution of gamasid mites on Himalayan field rat (Rattus nitidus) in Yunnan Province of Southwest China;Biologia,2021

3. Analysis of gamasid mites (Acari: Mesostigmata) associated with the Asian house rat, Rattus tanezumi (Rodentia: Muridae) in Yunnan Province, southwest China;Parasitol. Res.,2013

4. Deng, G.F., and Teng, K.F. (1993). Economic Insect Fauna of China Fasc. 40 Acari: Dermanyssoidese, Science Press. (In Chinese).

5. Dermatitis in humans associated with the mites Pyemotes tritici, Dermanyssus gallinae, Ornithonyssus bacoti and Androlaelaps casalis in Israel;Med. Vet. Entomol.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3