Abstract
The purpose of the present study was to determine hypoxic brain damage in calves with perinatal asphyxia using brain-specific damage biomarkers. Ten healthy and 25 calves with perinatal asphyxia were enrolled in the study. Clinical examination, neurological status score, and laboratory analysis were performed at admission, 24, 48, and 72 h. Serum concentrations of ubiquitin carboxy-terminal hydrolysis 1 (UCHL1), calcium-binding protein B (S100B), adrenomodullin (ADM), activitin A (ACTA), neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP) and creatine kinase-brain (CK-B) were measured. Histopathological and immunohistochemical examinations of the brain tissue were performed in 13 nonsurvivor calves. The neurological status score of the calves with asphyxia was significantly (p < 0.05) lower. Mix metabolic-respiratory acidosis and hypoxemia were detected in calves with asphyxia. Serum UCHL1 and S100B were significantly (p < 0.05) increased, and NSE, ACTA, ADM, and CK-B were decreased (p < 0.05) in calves with asphyxia. Histopathological and immunohistochemical examinations confirmed the development of mild to severe hypoxic-ischemic encephalopathy. In conclusion, asphyxia and hypoxemia caused hypoxic-ischemic encephalopathy in perinatal calves. UCHL1 and S100B concentrations were found to be useful markers for the determination of hypoxic-ischemic encephalopathy in calves with perinatal asphyxia. Neurological status scores and some blood gas parameters were helpful in mortality prediction.
Funder
Scientific and Technological Research Council of Turkiye
Subject
General Veterinary,Animal Science and Zoology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献