The Effects of Fin Parameters on the Solidification of PCMs in a Fin-Enhanced Thermal Energy Storage System

Author:

Zarei Mohammad Javad,Bazai HassanORCID,Sharifpur MohsenORCID,Mahian Omid,Shabani Bahman

Abstract

In the present study, a triplex-tube, employing fin-enhanced phase change materials (PCMs), as a thermal energy storage (TES) system was studied numerically. The main flaw of the PCMs is their low thermal conductivity that restricts their effectiveness for energy storage applications. Metallic (copper) fins are added to the geometry of the system to improve their function by extending the heat transfer area. The effects of the presence, configuration, and dimensions of copper fins were investigated to understand the best design for minimizing the solidification time and achieving the best performance enhancement for the TES system selected for this study. The results revealed that the best performance belonged to fins with a mix configuration, with an attachment angle of 90° and the length and width of 28 mm and 1 mm, respectively. Using this configuration could reduce the required time for complete solidification by around 42% compared to the system without fins. Moreover, it was concluded that increasing the length of the fin could offer its positive effect for enhancing the performance of TES system up to an optimal point only while increasing the width showed a diverse influence. Furthermore, the angles between the tube surface and the fin direction were investigated and 90° was found to be the best choice for the TES case selected in this study. In addition, placement of the fins on the surface of internal or external tube or mix method did not show a significant effect while placing the fins on the external surface of the tube showed even a negative impact on the performance of the TES system compared with when no fins were applied.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3