Abstract
Microgrid is becoming an essential part of the power grid regarding reliability, economy, and environment. Renewable energies are main sources of energy in microgrids. Long-term solar generation forecasting is an important issue in microgrid planning and design from an engineering point of view. Solar generation forecasting mainly depends on solar radiation forecasting. Long-term solar radiation forecasting can also be used for estimating the degradation-rate-influenced energy potentials of photovoltaic (PV) panel. In this paper, a comparative study of different deep learning approaches is carried out for forecasting one year ahead hourly and daily solar radiation. In the proposed method, state of the art deep learning and machine learning architectures like gated recurrent units (GRUs), long short term memory (LSTM), recurrent neural network (RNN), feed forward neural network (FFNN), and support vector regression (SVR) models are compared. The proposed method uses historical solar radiation data and clear sky global horizontal irradiance (GHI). Even though all the models performed well, GRU performed relatively better compared to the other models. The proposed models are also compared with traditional state of the art methods for long-term solar radiation forecasting, i.e., random forest regression (RFR). The proposed models outperformed the traditional method, hence proving their efficiency.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Korea Electric Power Corporation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference41 articles.
1. Peaceful coexistence: Independent microgrids are coming;Sare,2013
2. Microgrids Literature Review through a Layers Structure
3. Recent approaches of forecasting and optimal economic dispatch to overcome intermittency of wind and photovoltaic (PV) systems: A review;Manzoor;Energies,2019
4. Renewables 2018 Global Status Report;Sawin,2018
5. The Importance of Wind Forecasting—Renewable Energy Focushttp://www.renewableenergyfocus.com/view/1379/the-importance-of-wind-forecasting
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献