A Speed-Governing System Model with Over-Frequency Protection for Nuclear Power Generating Units

Author:

Wang Li,Sun Wentao,Zhao JieORCID,Liu Dichen

Abstract

Overspeed is more likely to occur in the process of load rejection or large disturbances for nuclear steam turbines due to the large parameter range and low steam parameters, as well as the power of the low-pressure cylinder accounting for a high proportion of the total power. It is of great significance to study the overspeed characteristics of nuclear power plants (NPPs) to ensure the safe and stable operation of the unit and power grid. According to the characteristics of NPPs, the overspeed protection model and the super-acceleration protection model were established, which were added to the speed-governing system model. The response characteristics of the reactor, thermal system, steam turbine and speed-governing system in the process of load rejection or large disturbances of the power grid were analyzed and simulated. The results were compared using the simulation software personal computer transient analyzer (PCTRAN). The simulation results showed that quickly closing both the high and medium pressure regulating valves could effectively realize frequency control when load rejection or a large grid disturbance occurred. The over-acceleration protection cooperates with the super-acceleration protection to avoid the repeated opening/closing of the valves due to overspeed protection. This could effectively reduce the impact of large disturbances on the reactor, thermal system, and turbine.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3