Abstract
Commercial and residential building is one of the four major final energy consumption and end-use sectors. In this sector, cooling loads represent an important part of the energy consumption, and therefore, they must be minimized, improving the energy efficiency of buildings. Ventilated façades are one of the most widely used passive elements that are integrated into buildings, precisely with the aim of reducing these loads. This reduction is due to the airflow induced in the air cavity by the buoyancy forces, when the solar radiation heats the outer layer of the façade. In the open joint ventilated facades (OJVF), ventilation is attained through the open joints between the panels composing the outer layer. Despite the steadily growing research in the characterization of this type of system, few studies combine the numerical modelling of OJVF with experimental results for the assessment of the airflow in the ventilated cavities. This paper experimentally validates a numerical simulation model of an OJVF. Firstly, the façade performance has been experimentally assessed in a laboratory model determining the temperatures in the panels and air gap and measuring the flow field at the gap using particle image velocimetry (PIV) techniques. Secondly, a numerical model has been developed using advanced Computational Fluid Dynamics (CFD) simulation tools. Finally, an experimental validation of the numerical model has been done. Experimental and numerical results are compared in different planes inside the ventilated cavity. The discrete ordinates (DO) radiation model and the k-ε renormalisation group (RNG) turbulence model better adjust the simulated results to the experimental ones.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference77 articles.
1. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildingshttps://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex%3A32010L0031
2. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex%3A32012L0027
3. The National Energy Code of Canada for Buildings 2017 (NECB 2017). National Research Council of Canada. Canadian Commission on Building and Fire Codeshttps://nrc.canada.ca/en
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献