A Dual-Path Cross-Modal Network for Video-Music Retrieval

Author:

Gu Xin,Shen Yinghua,Lv ChaohuiORCID

Abstract

In recent years, with the development of the internet, video has become more and more widely used in life. Adding harmonious music to a video is gradually becoming an artistic task. However, artificially adding music takes a lot of time and effort, so we propose a method to recommend background music for videos. The emotional message of music is rarely taken into account in current work, but it is crucial for video music retrieval. To achieve this, we design two paths to process content information and emotional information between modals. Based on the characteristics of video and music, we design various feature extraction schemes and common representation spaces. In the content path, the pre-trained network is used as the feature extraction network. As these features contain some redundant information, we use an encoder–decoder structure for dimensionality reduction. Where encoder weights are shared to obtain content sharing features for video and music. In the emotion path, an emotion key frames scheme was used for video and a channel attention mechanism was used for music in order to obtain the emotion information effectively. We also added emotion distinguish loss to guarantee that the network acquires the emotion information effectively. More importantly, we propose a way to combine content information with emotional information. That is, content features are first stitched together with sentiment features and then passed through a fused shared space structured as an MLP to obtain more effective fused shared features. In addition, a polarity penalty factor has been added to the classical metric loss function to make it more suitable for this task. Experiments show that this dual path video music retrieval network can effectively merge information. Compared with existing methods, the retrieval task evaluation index increases Recall@1 by 3.94.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. YuYin: a multi-task learning model of multi-modal e-commerce background music recommendation;EURASIP Journal on Audio, Speech, and Music Processing;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3