Modeling of Turbulent Heat-Transfer Augmentation in Gas-Droplet Non-Boiling Flow in Diverging and Converging Axisymmetric Ducts with Sudden Expansion

Author:

Pakhomov Maksim A.,Terekhov Viktor I.

Abstract

The effect of positive (adverse) and negative (favorable) longitudinal pressure gradients on the structure and heat transfer of gas-droplet (air and water) flow in axisymmetric duct with sudden expansion are examined. The superimposed pressure gradient has a large influence on the flow structure and heat transfer in a two-phase mist flow in both a confuser and a diffuser. A narrowing of the confuser angle leads to significant suppression of flow turbulence (more than four times that of the gas-drop flow after sudden pipe expansion without a pressure gradient at φ = 0°). Recirculation zone length decreases significantly compared to the gas-droplet flow without a longitudinal pressure gradient (by up to 30%), and the locus of the heat-transfer maximum shifts slightly downstream, and roughly aligns with the reattachment point of the two-phase flow. Growth of the diffuser opening angle leads to additional production of kinetic energy of gas flow turbulence (almost twice as much as gas-droplet flow after a sudden pipe expansion at φ = 0°). The length of the flow recirculating region in the diffuser increases significantly compared to the separated gas-droplet flow without a pressure gradient (φ = 0°), and the location of maximum heat transfer shifts downstream in the diffuser.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3