Experimental Characterization of Oil/Gas Interface Self-Adjustment in CO2-Assisted Gravity Drainage for Reverse Rhythm Reservoir

Author:

Han Haishui,Chen Xinglong,Ji Zemin,Li Junshi,Lv Weifeng,Zhang Qun,Gao Ming,Kang Hao

Abstract

Worldwide practices have proven that gas-assisted gravity drainage can obviously enhance oil recovery, and this technology can be especially effective for reservoirs with a thick formation and large inclination angle. For the successful implementation of this process, a key technology is the stable control of gas–oil interface during gas injection. For a detailed exploration of this technique, a three-stage permeable visual model was designed and manufactured, with permeability decreasing from top to bottom, thus, a reverse rhythm reservoir was effectively modeled. Then the experiment concerning CO2-assisted gravity drainage was carried out with the adoption of a self-developed micro visual displacement device. This study mainly focused on the micro migration law of gas–oil interface and the development effects of CO2-assisted gravity drainage. According to the experiments, CO2 fingering somewhat happens in the same permeable layer from the beginning of gas injection. However, phenomena of “wait” and “gas–oil interface self-adjustment” occur instead of flowing into the next layer when the injected CO2 reaches the boundary of the next lower permeability layer through the dominant channel. By the “gas–oil interface self-adjustment”, the injected CO2 first enters into the pores of the relative higher permeability layer to the greatest extent, and thus expands the sweep volume. Futhermore, in the process of CO2 injection, obvious gas channeling occurs in the low permeability layer directly connected to the outlet, resulting in low sweep efficiency and poor development effect. After connecting the core with lower permeability at the outlet, the development indexes of the model, such as the producing degree of the low permeability layer, the oil recovery before and after gas breakthrough, are significantly improved, and the recovery degrees of the medium permeability layer and the high permeability layer are also improved, and the overall recovery factor is increased by 12.38%. This “gas–oil interface self-adjustment” phenomenon is explained reasonably from the two scales of macroscopic flow resistance and microscopic capillary force. Finally, the enlightenments of the new phenomenon are expounded on the application of gas-assisted gravity drainage on site and the treatment of producers with gas breakthrough in gas injection development.

Funder

major science and technology projects of Petrochina Company Limited

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3